Dirty8085: An Intel 8085 Microprocessor simulator

This is another quick post about an unfinished (but working) software which I wrote around 8 years ago. It is an Intel 8085 microprocessor simulator, with a text based interface. The objective was to simulate the microprocessor, along with a minimal interface which closely resembles the microprocessor kit with the 7-segment displays, hex keyboard and minimal debugging features.

Quick story

In our undergraduate computer science degree, we had a few subjects on microprocessor architecture. One of the subjects focused on the Intel 8085 microprocessor architecture in great details, Intel 8086 architecture, interfacing, etc. Along with the detailed architecture, we also had to do some assembly code for 8085. It was fun because, we had to use a physical 8085 microprocessor kit with a hex keyboard and just those 7-segment displays.

8085 Microprocessor trainer kit

To write a code in the kit, you need to scan through the memory and enter the values of the assembled code. Who assembles it? We had to do that manually. We would have a table of all the instructions and the hex value for the op-code. More essentially it is very important to know the precise operations for each instruction. What operation it performs, which registers are accessed, what memory locations are accessed and how does it change the flags.

It gets more interesting (sometimes painful) when you first write your code in assembly in a white sheet of physical paper, then you refer the table and convert the assembly code to machine code, basically an entire page of hex values. Next, you get to your 8085 microprocessor kit, start from a memory location and keep on typing these hex values like a maniac. There were 8085 microprocessor kits which had some “debugging” facility, but essentially, if something goes wrong, it was extremely difficult to find, given our skills.

Although we were required to use the physical 8085 microprocessor kit in the exams, but for practice, we used 8085 microprocessor simulators. There are quite a few 8085 microprocessor simulators available. One of them was provided with one of the text books. There were simulators with text interface, some with text and some with nice GUI interfaces. I used one of them, the GNUSim8085. You can find an in depth review of GNUSim8085, which I wrote for OpenSource For You long ago, also posted here: Reviewing the GNUSim8085 (v1.3.7).

I personally did not like most of the simulators or the interfaces. All of them involved a lot of mouse-clicking, which slows you down a lot and does not reflect the actual 8085 trainer kit experience. There were a few which had full keyboard control, but somehow we felt that they were cumbersome. The Intel 8085 trainer kit experience was highly required inorder to timely and correctly finish the tasks given in the examination. The good thing was, I (and a few of my friends) knew exactly what I was looking for. Therefore I tried to make one … (drum roll)Dirty8085.

Continue reading “Dirty8085: An Intel 8085 Microprocessor simulator”

CPULeash: A tool for capping per-process and process group CPU utilisation from userspace

It’s now mid October, there are 0 posts in 2017. Therefore I think it’s time to loosen up posting constraints and try make a bit more casual posts. For a start I will dig up one of the unfinished works. I will start with a quick overview of an old piece of tool (unmaintained) I wrote quite a few years ago. The tool caps the maximum CPU utilisation of a process from userspace without requiring root access. One instance of the process can cap multiple processes individually, in a group or it can also cap an entire process sub-tree. I intended to post about it in great detail, but this time I will keep it brief, and dig deeper in the next opportunity. Let’s get into it.

Motivation (from agony)

A few years ago, I was used to run different CPU intensive experiments on my old laptop, which would sometime run weeks. The CPU temperature used to go up to 95 Deg C. Sometimes it went upto 99 Deg C and then it used to throttle down the cores to get the temperature down. This is definitely not a healthy temperature, therefore I feared of hardware damage. The laptop had a metal case, which became so hot that it left red marks on my thighs. One time an entire chocolate bar melted into a pool of liquid chocolate (someone left it near the exhaust fan). Therefore it was time that I figure something out, such that I can run the experiments, but keep the laptop cool (relatively).

The obvious idea was to cap the CPU usage for the processes. An easy solution is to install a virtual machine and run the code inside the virtual environment. Note that, in my case nice does not work, as it does not help control how much of the CPU a processes utilises when it acquires it. I could have used cgroups, but I didn’t want to (I don’t know why). At that point of time I was feeling the need for Solaris Zones.

Essentially what I wanted is something portable in any *nix system, works completely from userspace and also does not need root privilege. Therefore I made a small tool which does in. It was written in C and POSIX compliant libraries.

Also note that, there is a similiar kind of tool called cpulimit, which I didn’t know existed when I wrote this. This tool works well too.

Given this situation, it was time to write something in-house … drum rollCPULeash.

Continue reading “CPULeash: A tool for capping per-process and process group CPU utilisation from userspace”

Hacking (Reverse engineering): Gaining access with wrong password

In this post, I will quickly show how you can use a debugger to hack poorly written or packaged code. More specifically, how to enter a wrong password but still get access. Before proceeding, I should be clear, that this is just a demonstration, and the programs out there in production (these days) will definitely not vulnerable to this method (if it is, then it is a shitty program). This is to demonstrate how you can change the execution path as you wish.

First I will show a simple code which prompts for a password to be set, then encrypts it using MD5 sum hash and salt and stores the hash in a file. Then it asks for the same password, reads the hash from the stored file and compares if the two entered passwords are same or not. Then I will show how to reverse engineer the executable file and enter the wrong password, but still make it think that we the correct password was entered. Continue reading “Hacking (Reverse engineering): Gaining access with wrong password”

Using WordPress.com stats API

gimp_logoLong ago I posted about the WordPress.com stats API. WordPress.com Stats API. WordPress.com stores your blog’s raw visit stats which is available via your API key and the blog URL. Basically these stats are used to show the stats you see in your dashboard.

wordpress_default_dashboard_stats

The older wordpress.com dashboard did not have much visualisations of the stats, but the new dashboard has introduced some more ways to see how your blog is doing. When I posted WordPress.com Stats API, there was absolutely no trace or documentation about the wordpress.com API. It seemed that even the guys in wordpress.com was not well aware about if such an API existed :D . (Check the post to know why).

At the previous post I just provided some guides on how to fetch the data. Recently I planned to write a quick implementation to fetch the stats from wordpress.com and therefore I am going to share the script. This is a quick and dirty implementation to demonstrate the stuff. I have also made a few processing on the incoming data and made a few plots. Most of which might not (will not) make much sense (especially the box plots), but it’s just for the baseline. Let’s proceed with the code. Continue reading “Using WordPress.com stats API”

Find process IDs of a running process by name

In this post I will talk about a procedure to find the process IDs of a running process by name, which can then be used to send signals or do other stuffs. For example if you have multiple instances of bash opened, this should be able to get you the list of process IDs (PIDs) of the bash instances.

Firstly, a shell utility is already available called pidof which is a part of the sysvinit-tools package. There are a whole bunch of tools in this package which lets you query PID based on different requirements, send signals to set of processes, etc. Just check out the stuff.

I will only mention the outline of how this is done and post the sourcecodes to do it. After that this can be extended to have many features just like the tools of sysvinit-tools package or more.
Continue reading “Find process IDs of a running process by name”

Plot histogram in terminal

We had assignments to print “*”s in different formation in undergraduate class, which I never liked as they were pointless. Now I got a somewhat justifiable application, plot histogram in terminal. In the last post Generating random numbers from Normal distribution in C I posted the C code to generate random numbers from the Normal distribution using the Polar method. In this post I am posting a simple code to plot the histogram of generated random numbers from this or any other distribution. Let me first post the code and then explain what is going on. Continue reading “Plot histogram in terminal”

Generating random numbers from Normal distribution in C

I needed to write a random number generator in C which will generate random numbers from Normal Distribution (Gaussian Distribution). Without this component I couldn’t proceed to finish writing a C code for Heuristic Kalman Algorithm by Lyonnet and Toscano for some experiments. I selected the Marsaglia and Bray method also known as the Polar method to generate Normal random variables. Here is how it is done. Continue reading “Generating random numbers from Normal distribution in C”

Dynamically allocating 2d array with adjacent rows in memory

In a previous post “Allocating multidimentional array at runtime in C” I have explained a technique to allocate multidimensional arrays on runtime. While playing around with OpenMPI, I came to know that while sending/receiving a buffer, it requires the elements of a 2d matrix (or any dimension) to be in adjacent. Basically it does not care what you send, or receive, what it cares is the number of elements to be send should be adjacent to one another. In the previous post, the process will allocate the 2d or n-d matrix, but the rows of the matrix may not be adjacent to each other, as each row was allocated separately with malloc and then inserted into another array of pointers, each of which location points to the base addresses of these memory block. Read the post for details.

In C language the 2d array/matrix are stored in a row-major order, that is the elements of the matrix are stored adjacent to each other in the memory row wise. The first row comes first then just after the first row the second row starts, and so on. In the previous method the rows of the matrix may be scattered throughout the memory, as they are allocated with seperate malloc calls, but each of these returned addresses to the memory blocks (used as rows) are assigned to another array of pointers, which holds the rows together, and allows the mat[i][j] syntax to work.

For the applications in which, we might need to allocate the matrix dynamically at runtime, also have the rows of the matrix requires to be adjacent in the memory, and also make the mat[i][j] syntax work can be fulfilled by the following approach.
Continue reading “Dynamically allocating 2d array with adjacent rows in memory”